
VIRUS BULLETIN www.virusbtn.com

44444 JANUARJANUARJANUARJANUARJANUARY 2005Y 2005Y 2005Y 2005Y 2005

TIME MACHINETIME MACHINETIME MACHINETIME MACHINETIME MACHINE
Peter Ferrie
Symantec Security Response, USA

It is commonly reported that the first known full stealth
file-infecting virus was Frodo, in 1989. In fact, that is true
only for the IBM PC world. The Commodore 64 world had
been infected three years earlier by what was perhaps truly
the first full stealth file-infecting virus: C64/BHP.A (not to
be confused with the boot-sector virus for the Atari, also
known as BHP).

All of the descriptions of BHP that were published at the
time were inaccurate, some of them even giving incorrect
descriptions of how the infection worked. This article takes
a look at what it really did.

BASIC INSTINCTBASIC INSTINCTBASIC INSTINCTBASIC INSTINCTBASIC INSTINCT
As with all Commodore 64 programs, BHP began with
some code written in Basic. This code consisted of a single
line, a SYStem [sic] call to the assembler code, where the
rest of the virus resided. Unlike many programs, the virus
code built the address to call dynamically. This may have
been written by a very careful coder, but it proved to be
unnecessary because the address did not change in later
versions of the machine.

Once the assembler code gained control, it placed itself in
the block of memory that was normally occupied by the I/O
devices when the ROM was banked-in.

At this point, it is necessary to describe some of the
Commodore 64 architecture in more detail.

DOWN MEMORDOWN MEMORDOWN MEMORDOWN MEMORDOWN MEMORY LANEY LANEY LANEY LANEY LANE
The Commodore 64 used a MOS 6510 CPU, a later version
of the MOS 6502 chip used by several competing machines
of the time, including the Apple II-series and the Atari 400
and 800.

Since the 6502’s data bus (and therefore the 6510’s data
bus) was only 16 bits wide, the maximum directly
addressable memory range was 64kb. In order to
accommodate more memory, a ‘banking’ architecture was
implemented, allowing different memory regions to be
mapped in under the user’s control, simply by writing the
appropriate value to a specific memory-mapped port.

NOW YOU SEE ME ...NOW YOU SEE ME ...NOW YOU SEE ME ...NOW YOU SEE ME ...NOW YOU SEE ME ...
The Commodore 64 allowed quite a large address space in
comparison with other machines at that time: potentially

eight banks of 64kb (a total of 512kb!) of memory were
available, though most machines did not have the chips
installed to provide that much.

Since the mapped regions all needed to be within the 64kb
range, a few memory ranges provided the base for all of the
banked memory, in order to give the maximum amount of
memory that would always be available. This greatly
reduced the complexity of the average program.

On the other hand, however, several steps were required for
a program that ran in one memory bank to access data in
another memory bank. The first step was to place code in
non-banked memory and run it. The next steps were for that
code to bank out the program, bank in the required data,
access that data and save them, then bank out the data, bank
in the program again, restore the data, and return control to
the program.

............... NOW YOU DON’TNOW YOU DON’TNOW YOU DON’TNOW YOU DON’TNOW YOU DON’T
A side-effect of memory-banking was that it was a great
way to hide a program, since the program was not visible if
its memory was not banked in. This is the reason why BHP
placed its code in banked memory.

After copying itself to banked memory, the virus restored
the host program to its original memory location and
restored the program size to its original value. This allowed
the host program to execute as though it were not infected.
However, at this time the virus would verify the checksum
of the virus’s Basic code, and would overwrite the host
memory if the checksum did not match.

An interesting note about the checksum routine is that it
missed the first three bytes of the code, which were the line
number and SYS command. This made the job easier for the
person who produced the later variant of the virus. Although
the later variant differed only in the line number, this was
sufficient to defeat the BHP-Killer program, because
BHP-Killer checked the entire Basic code, including the
line number.

CAPTCAPTCAPTCAPTCAPTAIN HOOKAIN HOOKAIN HOOKAIN HOOKAIN HOOK
The virus checked whether it was running already by
reading a byte from a specific memory location. If that
value matched the expected value, the virus assumed that
another copy was running. Thus, writing that value to that
memory location would have been an effective inoculation
method. Similar methods were used against viruses for the
Commodore Amiga machines.

If no other copy of the virus was running, the virus would
copy some code into a low address in non-banked memory,
and hook several vectors, pointing them to the copied code.

VIRUS ANALYSIS

VIRUS BULLETIN www.virusbtn.com

55555JANUARJANUARJANUARJANUARJANUARY 2005Y 2005Y 2005Y 2005Y 2005

The virus hooked the ILOAD, ISAVE, MAIN, NMI,
CBINV and RESET vectors.

The hooking of MAIN, NMI, CBINV and RESET made the
virus Break-proof, Reset-proof, and Run/Stop-Restore-proof.
These hooks ensured that the virus did not lose control
while the machine restarted. This technique was similar to
the Ctrl-Alt-Delete hooks that were used later in DOS
viruses on the IBM PCs, or the Ctrl-Amiga-Amiga hooks
that viruses used on the Commodore Amiga.

Once the hooks were in place, the virus ran the host code.
The main virus code would be called on every request to
load or save a file.

HEAHEAHEAHEAHEAVY LOADVY LOADVY LOADVY LOADVY LOAD

The ILOAD hook was reached when a disk needed to be
searched. This happened whenever a directory listing was
requested, and could happen when a search was made using
a filename with wildcards, or the first time that a file was
accessed. Otherwise, the drive hardware cached up to 2kb of
data and returned it directly.

The virus called the original ILOAD handler, then checked
whether an infected program had been loaded. If an infected
program had been loaded, the virus restored the host
program to its original memory location and restored the
program size to its original value. Otherwise, even if no file
had been loaded, the virus called the infection routine.

DON’T FORGET TO SADON’T FORGET TO SADON’T FORGET TO SADON’T FORGET TO SADON’T FORGET TO SAVEVEVEVEVE

The ISAVE hook was reached whenever a file was saved.
The virus called the original ISAVE handler to save the file,
then called the infection routine.

The infection routine began by checking that the requested
device was a disk drive. If so, then the virus opened the first
file in the cache. The first file in the cache would be the
saved file if this code was reached via the ISAVE hook,
otherwise it would be the first file in the directory listing.

If the file was a Basic program, then the virus performed a
quick infection check by reading the first byte of the
program and comparing it against the SYS command. The
virus read only one byte initially, because disk drives were
serial devices on the Commodore 64, and therefore very
slow. However, if the SYS command was present, the virus
verified the infection by reading and comparing up to 27
subsequent bytes. A file was considered infected if all 27
bytes matched.

If the file was not infected, the virus switched to reading
data from the hardware cache. The first check was for a
standard disk layout: the directory had to exist on track 18,

sector 0, and the file to infect had not to have resided on
that track.

LESS TLESS TLESS TLESS TLESS TALK, MORE ACTIONALK, MORE ACTIONALK, MORE ACTIONALK, MORE ACTIONALK, MORE ACTION

If these checks passed, the virus searched the track list for
free sectors. It began with the track containing the file to
infect, then moved outwards in alternating directions.
This reduced the amount of seeking that the drive had to
perform in order to read the file afterwards, and was a very
interesting optimisation, given that some multi-sector boot
viruses on the IBM PC placed their additional code at the
end of the disk, leading to very obvious (read: audible)
seeking by the drive.

If at least eight free sectors existed on the same track, then
the virus allocated eight sectors for itself and updated the
sector bitmap for that track. The code to update the sector
bitmap was beautiful, allocating the sectors and creating the
list of sector numbers at the same time. The code could have
been shortened slightly, though, by reordering some of the
instructions.

This was the case throughout the virus – overall, the code
was very tight (as it needed to be), but there were some
pieces of code that could have been optimised in very
obvious (and some less obvious) ways. There were also a
couple of harmless bugs. However, given the size of the
code, the only resulting advantage would have been that the
payload (see below) could have contained a longer message
or more effects.

By comparison, the code used to write the virus to the disk
was a horrible mess – suggesting, perhaps, that it was
written by a co-author. The virus wrote itself to disk in the
following manner: the first sector of the host was copied to
the last sector allocated by the virus, then that first sector

Figure 1. BHP’s payload. The text was displayed one character at a
time, while the colours of the border cycled.

VIRUS BULLETIN www.virusbtn.com

66666 JANUARJANUARJANUARJANUARJANUARY 2005Y 2005Y 2005Y 2005Y 2005

was replaced by the first sector of the virus. After that, the
remaining virus code was written to the remaining allocated
sectors.

The directory stealth was present here, and it existed
without any effort on the part of the virus writer(s). It was a
side-effect of the virus not updating the block count in the
directory sector. The block count was not used by DOS to
load files, its purpose was informational only, since it was
displayed by the directory listing.

In fact, the same problem existed on DOS for the Apple II
series of machines and such a virus would have been much
easier to write there, since communication with the hardware
is much simpler on those machines. The only obvious effect
in the case of BHP was that the number of free blocks on
the disk was visibly reduced, because the value was
calculated using the sector bitmap, not the directory listing.

PPPPPAAAAAYLOADYLOADYLOADYLOADYLOAD

After any call to ILOAD or ISAVE, the virus checked
whether the payload should activate. The conditions for
the payload activation were the following: that the machine
was operating in ‘direct’ mode (the command-prompt),
that the seconds field of the jiffy clock was a value from
2–4 seconds, and that the current scan line of the vertical
retrace was at least 128. This made the activation fairly
random. The payload was to display a particular text, one
character at a time, while cycling the colours of the border
(see Figure 1).

The serial number that was displayed was the number of
times the payload check was called. It was incremented
once after each call, and it was carried in replications. It
reset to zero only after 65,536 calls.

CONCLUSIONCONCLUSIONCONCLUSIONCONCLUSIONCONCLUSION

So now we know: BHP was a virus ahead of its time.

C64/BHP.A

Size: 2030 bytes.

Type: Memory-resident parasitic
prepender.

Infects: Commodore 64 Basic files.

Payload: Displays text under certain
conditions.

Removal: Delete infected files and restore
them from backup.

